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gM (q2), gE(q2), and gC(q2).
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1. Introduction

Quantum Chromodynamics (QCD) in the limit of infinite number of colours (QCD∞) [1]

is known to be solvable, predicting a hadronic spectrum made of an infinite number of

zero-width resonances [2]. However, the hadronic parameters in this spectrum (masses,

couplings, etc.) remain unspecified, so that a model is required to fix them. Some models

of this spectrum have been proposed for heavy quark Green’s functions [3]–[4], as well as

for light quark systems [5]. The infinite number of zero-width resonances of QCD∞ evokes

Veneziano’s Dual-Resonance model [6], the precursor of string theory. In fact, drawing from

this model, a concrete realization of QCD∞ has been proposed, namely Dual-QCD∞ [7]–

[8]. In this framework the masses and couplings in three-point Green’s functions are chosen

so that form factors are expressed as an Euler Beta function of the Veneziano type. The

asymptotic Regge behaviour of these form factors in the space-like region is power-like, and

controlled by a single free parameter of the model. In the time-like region Dual-QCD∞ is

not afflicted by unitarity violations known to affect n-point functions (n ≥ 4). In fact,

three-point functions can be safely unitarized by simply shifting the poles from the real-

axis into the second Riemann sheet in the complex energy (squared) plane [7, 9]–[10]. This

procedure also provides an estimate of the corrections to QCD∞ expected from the fact

that Nc = 3. These corrections are small, and of order Γ/M . 10%, where Γ and M are

a typical width and hadronic resonance mass, respectively.

It is perhaps important to emphasize that Dual-QCD∞ is simply a model realization

of QCD∞ which fixes the otherwise unspecified masses and couplings in this theory. Hence,

it is not a model based on the 1/Nc expansion. In fact, Nc is assumed infinite from the

start, and no attempt is made to obtain corrections from a power series expansion in 1/Nc.

For other model realizations of QCD∞, but based on the same philosophy, see e.g. [11].

Dual-QCD∞ has been applied with great success to the pion form factor Fπ(q2) in

both the time-like and the space-like regions [7, 12], as well as to the proton form factors

in the latter region [8]. For the pion one finds excellent agreement with data in the wide

range −q2 = 0 − 10 GeV2, resulting in a chi-squared per degree of freedom χ2
F ≃ 1.1. A
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similar high quality fit is also achieved in the time-like region. In the case of the proton,

the results for the form factors F1(q
2) and F2(q

2), or GM (q2) and GE(q2), are in very good

agreement with data in the available range −q2 = 0 − 30 GeV2. Furthermore, once the

free parameter in each form factor is fixed by the fit, there follows a prediction for the ratio

GE(q2)/GM (q2). This ratio is in reasonable agreement with polarization transfer data

indicating a strong deviation from the so-called scaling law (GE(q2)/GM (q2) ≃ const.).

It is important to mention that if the free parameter of the Dual-QCD∞ form factor is

determined from a fit to the high −q2 data, one subsequently achieves agreement all the

way down to q2 = 0. The mean-squared radius then becomes a prediction, which e.g. in

the case of the pion agrees with data to within one-third of a standard deviation. Clearly,

the converse procedure can be applied with equivalent results, i.e. fixing the free parameter

from the radius leads to agreement with space-like data everywhere.

While Dual-QCD∞ is a particular realization of QCD∞, it can also be viewed as

an Extended Vector Meson Dominance model providing corrections to single rho-meson

dominance. These corrections arise from the contributions of the radial excitations of the

rho-meson. In fact, as is well known, experimentally Fπ(q2) falls off with −q2 faster than

a monopole, and GM (q2) faster than a dipole. In Dual-QCD∞ this is precisely the case,

the source of the correction being the radial excitations of the rho-meson. At this point

it should be mentioned that Perturbative QCD (PQCD) together with some empirical

counting rules [13] lead to monopole and dipole type of asymptotic behaviour for Fπ(q2)

and GM (q2), respectively. However, these results are believed to hold only at extreme

asymptotic momenta. In fact, while deep-inelastic scattering indicates precocious scaling,

this does not seem to be the case for exclusive processes, such as elastic scattering, or

semi-inclusive reactions such as tau-lepton decay into hadrons.

In the past few years there has been a renewed interest in understanding the electro-

magnetic structure of the ∆(1232), largely motivated by high precision measurements of the

photon induced N → ∆(1232) transition at electron beam laboratories (LEGS, BATES,

ELSA, MAMI, and J-LAB) [14]. Concurrently, on the theory sector, lattice QCD and sev-

eral dynamical models, as well as chiral effective-field theories, have been used to confront

the data [14]. Motivated by the success of Dual-QCD∞ in accounting for the data on the

pion and proton form factors, we perform here a determination in this framework, and

in the space-like region, of G∗
M (q2), G∗

E(q2), and G∗
C(q2), the so-called Jones-Scadron [15]

electromagnetic form factors of the ∆(1232). After fixing each one of the three free pa-

rameters from fits to data, a prediction is obtained for the chiral effective-field theory form

factors gM (q2), gE(q2), and gC(q2).

2. Form factors in dual-QCD
∞

In the literature there are quite a few conventions for the three electromagnetic form

factors of ∆(1232). Some of these are affected by kinematical singularities, and not all

are dimensionless. We choose here the Jones-Scadron definition [15] in which all three

form factors are free of kinematical singularities, and are dimensionless. Generally, in the

– 2 –
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Figure 1: The magnetic form factor G∗

M (Q2), eq. (2.5), with βM = 4.6, together with the data [19].

framework of QCD∞ one expects the form factors to be given by

G∗
i (s) =

∞∑

n=0

Cin

(M2
n − s)

, (2.1)

where i = M,E,C correspond to M (magnetic dipole), E (electric quadrupole), and C

(Coulomb quadrupole), respectively, s ≡ q2, and the masses of the vector-meson zero-

width resonances, Mn, as well as their couplings Cin , are not predicted in this framework.

In Dual-QCD∞ these are chosen so that the form factors are given by Euler Beta functions,

i.e.

Cin = G∗
i (0)

Γ(βi − 1/2)

α′
√

π

(−1)n

Γ(n + 1)

1

Γ(βi − 1 − n)
, (2.2)

where βi(i = M,E,C) are free parameters controlling, respectively, the asymptotic be-

haviour of the form factors G∗
M (Q2), G∗

E(Q2), G∗
C(Q2) in the space-like region (s < 0), and

α′ = 1/2M2
ρ is the universal string tension entering the rho-meson Regge trajectory

αρ(s) = 1 + α′(s − M2
ρ ) . (2.3)

The mass spectrum is chosen as [16]

M2
n = M2

ρ (1 + 2n) . (2.4)

Using eqs. (2.2) and (2.4) in eq. (2.1) one obtains

G∗
i (s) = G∗

i (0)
Γ(βi − 1/2)√

π

∞∑

n=0

(−1)n

Γ(n + 1)

1

Γ(βi − 1 − n)

1

[n + 1 − αρ(s)]

= G∗
i (0)

1√
π

Γ(βi − 1/2)

Γ(βi − 1)
B(βi − 1, 1/2 − α′s) , (2.5)

– 3 –
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Figure 2: The ratios REM (Q2) and RSM(Q2) defined in eq. (3.1) with βM = βE = 4.6, and

βC = 6.2, together with the data [20].

where B(x, y) ≡ Γ(x) Γ(y)/Γ(x + y) is the Euler Beta function. In the time-like region

(s > 0) the poles of the Beta function correspond to an infinite set of zero-width resonances

with equally spaced squared masses given by eq. (2.4). In fact, from eq. (2.5) it follows

Im Gi(s) = G∗
i (0)

Γ(βi − 1/2)

α′
√

π

∞∑

n=0

(−1)n

Γ(n + 1)

1

Γ(βi − 1 − n)
π δ(M2

n − s) . (2.6)

Asymptotically, the Regge behaviour of the form factors in the space-like region is

power-like, i.e.

lim
s→−∞

Gi(s) = (−α′ s)(1−βi) , (2.7)

The free parameters βi can be fixed from fits to the data in this region. Notice that the

values βi = 2 reduce the form factors to single rho-meson dominance (naive Vector Meson

Dominance).

The mass formula eq. (2.4) predicts e.g. for the first three radial excitations: Mρ′ ≃
1340 MeV, Mρ′′ ≃ 1720 MeV, and Mρ′′′ ≃ 2034 MeV in reasonable agreement with exper-

iment [17]: Mρ′ = 1465 ± 25 MeV, Mρ′′ = 1700 ± 20 MeV, and Mρ′′′ = 2149 ± 17 MeV.

Alternative, e.g. non-linear, mass formulas have been proposed in an attempt to match the

asymptotic Regge behaviour to the Operator Product Expansion of current correlators at

short distances [18]. However, the differences with linear formulas in the values of the first

few masses are at the level of a few percent. Hence, the form factors are hardly modi-

fied, since the contribution from higher resonances is factorially suppressed, as seen from

eq. (2.5).
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Figure 3: The differences G∗

i (Q
2) − G∗

i (0), (i = M.E, C), for βM = βE = 4.6 and βC = 6.2.

3. Results

In order to fix the free parameter in each of the three form factors we use data on G∗
M (q2),

and on the ratios

REM = − G∗
E(Q2)

G∗
M (Q2)

, RSM = − Q+Q−

4 M2
∆

G∗
C(Q2)

G∗
M (Q2)

, (3.1)

where

Q2
± = (M∆ ± MN )2 + Q2 , (3.2)

and in the sequel we use Q2 = −q2 = − s ≥ 0. The normalization of the form factors

G∗
i (Q

2) is [14]: G∗
M (0) = 3.04, G∗

E(0) = 0.07, and G∗
C(0) = 1.00. The ratios above are

then normalized as: REM (0) = −2.30%, and RSM(0) = −3.46%. The best fit to data on

G∗
M (Q2) is achieved for βM = 4.6 − 4.8. Figure 1 shows G∗

M (Q2) for βM = 4.6 together

with the experimental data [19]. The value β = 4.8 changes only slightly the high Q2 tail of

this curve. Next, we fit the ratio REM(Q2), eq. (3.1). Given the large experimental errors

in this quantity it is not possible to go beyond the obvious fit REM(Q2) ≃ constant, or

βM ≃ βE . This result is shown in figure 2 for βM = βE = 4.6, together with the data [20].

Future improvement in the accuracy of this data might reveal some Q2-dependence in this

ratio, which would require slightly different values of βE .

Finally, the ratio RSM(Q2), eq. (3.1), can be fitted with βM = 4.6 and βC = 6.0 − 6.2.

This is shown in figure 2 together with the data [20]. In figure 3 we show the differences

G∗
i (Q

2) − G∗
i (0), (i = M,E,C), which can be compared with a similar figure given in [14]

showing predictions from several dynamical models [21]–[22]. Our results appear to agree

qualitatively and quantitatively with most of these models.

– 5 –
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Figure 4: The chiral effective-field theory form factors gM (Q2) (curve [a]), gE(Q2) (curve [b]), and

gC(Q2) (curve [c]), at low Q2.

Figure 5: The absolute values of the chiral effective-field theory form factors |gM (Q2)| (curve [a]),

|gE(Q2)| (curve [b]), and |gC(Q2)| (curve [c]), at intermediate Q2.

There is an alternative set of electromagnetic form factors of the ∆(1232), which are

being used in the framework of a chiral effective-field theory [22], namely gM (Q2), gE(Q2),

and gC(Q2). These are related to the Jones-Scadron form factors as

gM (Q2) = G∗
M (Q2) − G∗

E(Q2) , (3.3)

gC(Q2) = Q2
+

[µ(Q2) G∗
C(Q2) + 4 M2

∆ G∗
E(Q2) ]

µ2(Q2) + 4 M2
∆ Q2

, (3.4)

gE(Q2) = 2
[Q2

+ G∗
E(Q2) − Q2 gC(Q2) ]

µ(Q2)
, (3.5)

– 6 –
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where µ(Q2) ≡ M2
N −M2

∆ + Q2. These form factors are normalized as [14]: gM (0) = 2.97,

gE(0) = −1.00, and gC(0) = −2.60.

Predictions for these form factors are shown in figure 4 at low Q2, and as absolute

values in figure 5 at intermediate Q2, both for βM = βE = 4.6 and βC = 6.2 in the

Jones-Scadron form factors.

4. Conclusions

Motivated by the good results obtained for the pion and proton electromagnetic form factors

in Dual-QCD∞ [7]–[8], this framework has been used here to parametrize the three Jones-

Scadron electromagnetic form factors of the ∆(1232) in the space-like region. These form

factors have the advantage of being dimensionless and free of kinematical singularities [15].

The single free parameter in each form factor has been fixed by fitting experimental data

on G∗
M (Q2) and on the ratios REM (Q2), and RSM(Q2). Very good agreement with the data

is achieved for G∗
M (Q2) in the wide range of momentum transfers Q2 = 0 − 10 GeV2. For

βM ≃ 4.6 in eq. (2.5), G∗
M (Q2) falls off with Q2 faster than a dipole. In fact, from eq. (2.7)

one finds G∗
M (Q2) ∼ (α′Q2)−3.6. This follows the trend that starts with the pion form

factor, which falls off faster than a monopole, Fπ(Q2) ∼ (α′Q2)−1.3, and the proton form

factors, which fall off faster than a dipole, F1(Q
2) ∼ (α′Q2)−2.03, F2(Q

2) ∼ (α′Q2)−3.2.

Future data on G∗
M (Q2) at higher Q2 might require some fine tuning on the value of βM .

Current data on the ratio REM (Q2), needed to fix βE , extends only up to Q2 ≃ 5 GeV2.

Within the rather large errors, this ratio is consistent with a constant, or βE ≃ βM . The

ratio RSM(Q2), though, does show an appreciable Q2-dependence leading to βC = 6.2. The

values found for all the three parameters βi carry an uncertainty at the level of a couple

of a percent.

Having fixed the Jones- Scadron form factors, G∗
i (Q

2), predictions then follow for an

alternative set of form factors, gi(Q
2), used in a chiral effective-field theory [22]. These

predictions should be of interest in this framework as they provide simple analytical ex-

pressions for the form factors in a wide range of momentum transfers.
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